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ON CRITICAL LP-DIFFERENTIABILITY OF BD-MAPS

FRANZ GMEINEDER AND BOGDAN RAITA

ABSTRACT. We prove that functions of locally bounded deformation on R"
are L7-1—differentiable £"—almost everywhere, thereby answering a question
raised in [1, Remark 4.5.(v)]. More generally, we show that this critical LP—
differentiability result holds for functions of locally bounded A—variation, pro-
vided that the first order, homogeneous differential operator A has finite di-
mensional null-space.

1. INTRODUCTION

Approximate differentiability properties of weakly differentiable functions are
reasonably well understood. Namely, it is well-known that maps in Wll(;g (R™, RY)
are LP —differentiable £"-a.e. in R”, where 1 < p < n, p* := np/(n — p) (see,
e.g., [5, Thm 6.2]). We recall that a map u: R® — RY is Li-approximately

differentiable at 2 € R™ if and only if there exists a matrix M € RYX" such that
1

q

(f |u<y>—u<x>—M<y—x>|qdy) — ofr)
Br(z)

as r J 0, whence, in particular, u is approximately differentiable at x with ap-
proximate gradient M (see Section 2 for precise definitions). For p = 1 one can
show in addition that maps u € BVi,.(R™?, RY) are LY differentiable £"—a.e. with
the approximate gradient equal £"—a.e. to the absolutely continuous part of Du
(15, Thm. 6.1, 6.4]). It is natural to ask a similar question of the space BD(R")
of functions of bounded deformation, i.e., of Ll(R”,R”)fmaps u such that the
symmetric part Eu of their distributional gradient is a bounded measure. The
situation in this case is significantly more complicated, since, for example, we
have BV(R",R") C BD(R") by the so—called Ornstein’s Non-inequality [4, 8, 10];
equivalently, there are maps v € BD(R™) for which the full distributional gradi-
ent Du is not a Radon measure, so one cannot easily retrieve the approximate
gradient of u from the absolutely continuous part of £u with respect to L£". It is
however possible to recover u from Eu via convolution with a (1 —n)-homogeneous
kernel (cp. Lemma 2.1). HAJLASZ used this observation and a Marcinkiewicz—
type characterisation of weak differentiability to show approximate differentiability
L"-a.e. of BD-functions (|7, Cor. 1]). This result was improved in [2, Thm. 7.4
to L!-differentiability £"-a.e. by AMBROSIO, COScCIA, and DAL MASO, using
the precise Korn—Poincaré Inequality of KOHN [9]. It was only recently when
ALBERTI, BIANCHINI, and CRIPPA generalized the approach in [7]|, obtaining LI—
differentiability of BD-maps for 1 < g < 1* (see [1, Thm. 3.4, Prop. 4.3]). It is,
however, unclear whether the critical exponent ¢ = 1* can be reached using the
Calderon—Zygmund—type approach in [1].
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2 F. GMEINEDER AND B. RAITA

In the present paper, we settle the question in |1, Rk. 4.5.(v)| of optimal differ-
entiability of BD-maps in the positive (see Corollary 1.2). Although reminiscent
of the elaborate estimates in [2, Sec. 7], our proof is rather straightforward. The
key observation is to replace KOHN’s Poincaré—Korn Inequality with the more
abstract Korn—Sobolev Inequality due to STRANG and TEMAM [12, Prop. 2.4],
combined with ideas developed recently by the authors in [6]. In fact, we shall
prove L™ ("=1)_differentiability of maps of bounded A—variation (as introduced in
[3, Sec. 2.2]), provided that A has finite dimensional null-space.

To formally state our main result, we pause to introduce some terminology and
notation. Let A be a linear, first order, homogeneous differential operator with
constant coefficients on R™ from V to W, i.e.,

(1.1) Au=>Y Aj0u, u:R">V,
j=1

where A; € Z(V, W) are fixed linear mappings between two finite dimensional real
vector spaces V and W. For an open set {2 C R", we define BVA(Q) as the space
of u € LY(Q, V) such that Au is a W-valued Radon measure. We say that A has
FDN (finite dimensional null-space) if the vector space {u € 2'(R",V): Au = 0}
is finite dimensional. Using the main result in [6, Thm. 1.1], we will prove that
FDN is sufficient to obtain a Korn—-Sobolev—type inequality

n—

1
(1.2) (][ lu — 7rBTu|% da:) " < cr][ |Au|dz
B, B

for all u € C>°(B,, V). Here 7 denotes a suitable bounded projection on the null-
space of A, as described in |3, Sec. 3.1|. This is our main ingredient to prove the
following:

Theorem 1.1. Let A as in (1.1) have FDN, v € BVE _(R™). Then u is L™/ (=1 -
differentiable at x for L"—a.e. x € R™.

Our example of interest is BD := BV?, where fu = (Du+ (Du)") /2 for
u: R®™ — R”. It is well known that the null-space of £ consists of rigid motions,
i.e. affine maps of anti-symmetric gradient. In particular, £ has FDN.

Corollary 1.2. Let u € BDioo(R™). Then u is L™ "=V _differentiable £L"~a.e.

This paper is organized as follows: In Section 2 we collect some notation and
definitions, mainly those of approximate and IP—differentiability, present the main
result in [1], collect a few results on A—weakly differentiable functions from |3, 6],
and prove the inequality (1.2). In Section 3 we give a brief proof of Theorem 1.1.

Acknowledgment. The authors wish to thank Jan Kristensen for reading a
preliminary version of the paper.

2. PRELIMINARIES

An operator A as in (1.1) can also be seen as Au = A(Du) for u: R" — V|
where A € Z(V @ R", W). We recall that such an operator has a Fourier symbol
map

Alglo =) & A,
j=1
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defined for £ € R"™ and v € V. An operator A is said to be elliptic if and only if for
all non—zero &, the maps A[¢] € Z(V, W) are injective. By considering the maps

us(@) = fla- )

for functions f € CY(R), it is easy to see that if A has FDN, then A is neces-
sarily elliptic. Ellipticity is in fact equivalent with one—sided invertibility of A in
Fourier space; more precisely, the equation Au = f can be uniquely solved for

u e ' (R", V) whenever f € ./ (R", W) NimA. One has:

Lemma 2.1. Let A be elliptic. There exists a convolution kernel K* € C®(R™\
{0}, 2(W,V)) which is (1 — n)-homogeneous such that v = K* x Au for all u €
L (R, V).

For a proof of this fact, see, e.g., [6, Lem. 2.1]. We next define, for open 2 C R”
(often a ball B,.(z)), the space
BVA(Q) == {u e LYQ,V): Au e M(Q, W)}

of maps of bounded A—variation, which is a Banach space under the obvious norm.
By the Radon—Nikodym Theorem Awu has the decomposition

dAu dA’uy
Au = A"l Q + Au = LML A°
u u + Ay arn +d\ASu\’ ul
with respect to £". Here |- | denotes the total variation semi-norm. We next see

that ellipticity of A implies sub—critical LP—differentiability. We denote averaged
integrals by £, := L"(Q)~! [, or by (-)a if @ = B, (), the ball of radius > 0
centred at z € R”.
Definition 2.2. A measurable map uw: R™ — V is said to be

o approximately differentiable at x € R™ if there exists a matric M € V QR"

such that
_ — M(y —
ot 10~ 0l2) = My —2)| _
y—w ly — zf
o LP-differentiable at x € R™, 1 < p < oo if there exists a matriz M € VQR"™
such that

(f ) () = My x>|pdy) "= o)

asr 0.
We say that Vu(z) := M is the approzimate gradient of u at x.

We should also recall that
v =aplimu(y) < Ve >0, liﬁ)n"‘”ﬁ" ({y € By(2): |u(y) —v| > e}) =0,
T

Yy—x
where z € R” and u: R® — V' is measurable. In the terminology of [1, Sec. 2.2],
we can alternatively say that u is LP—differentiable at x if
(2.1) u(y) = Vu(z)(y — z) + u(z) + Re(y),

where (|Rg|P)zr = o(rP) as r L 0. We will refer to the decomposition (2.1) as a
first order LP—Taylor expansion of u about z.

Theorem 2.3 ([1, Thm. 3.4]). Let K € C*(R™\{0}) be (1—n)-homogenecous, and
w € M(R™) be a bounded measure. Then u = K x p is LP—differentiable L™ -a.e.
forall1 <p<n/(n—1).
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As a consequence of Lemma 2.1 and Theorem 2.3, we have that if A is elliptic,
then maps in BVA(R") are LP-differentiable £"a.e. for 1 < p < n/(n — 1) (cp.
Lemma 3.1). Ellipticity, however, is insufficient to reach the critical exponent. In
Theorem 1.1, we show that FDN is a sufficient condition for the critical L™/ ("= —
differentiability. The following is essentially proved in [11], and is discussed at
length in [3, 6]. We will, however, sketch an elementary proof for the interested
reader.

Lemma 2.4. Let A as in (1.1) have FDN. Then there exists | € N such that
null-space elements of A are polynomials of degree at most [.

Sketch. One can show by standard arguments that if A is elliptic and Au = 0 in
2'(R™, V), then u is in fact analytic. If u is not a polynomial, then one can write
u as an infinite sum of homogeneous polynomials and identify coefficients, thereby
obtaining infinitely many linearly independent (homogeneous) polynomials in the
null-space of A. Then the kernel consists of polynomials, which must have a
maximal degree, otherwise A fails to have FDN. U

We next provide Sobolev—Poincaré-type inequality which, in the A—setting, fol-
lows from the recent work [6] and is the main ingredient in the proof of Theo-
rem 1.1. Following [3, Sec. 3.1], we define for A with FDN, n5: C®NBVA(B) —
ker ANL?(B, V) as the L% projection onto ker A.

Proposition 2.5 (Poincaré-Sobolev—-type Inequality). Let A as in (1.1) have
FDN. Then (1.2) holds. Moreover, there exists ¢ > 0 such that

n—1

(7[ lu — WBT(x)u|# dy) < crk"]Au\(Br(az)).
B, ()

for all w € BVE (R™), z € R™, r > 0.

loc

Proof. By smooth approximation ([3, Thm. 2.8]), it suffices to prove (1.2). Since
TB,(z) i linear, we can assume that r = 1, x = 0. The result then follows by
scaling and translation. We abbreviate B := B;(0). By [6, Thm. 1.1] we have that

n_1
</ lu — mgu| 7T dy) " <e (/ |Au| + |u — TRU| dy) < c/ |Au| dy,
B B B

where for the second estimate we use the Poincaré—type inequality in [3, Thm. 3.2].
The proof is complete. O

3. PROOF OF THEOREM 1.1

We begin by proving sub-critical LP-differentiability of u € BV* for elliptic
A (cp. |7, Thm. 5]). We also provide a formula that enables us to retrieve the
absolutely continuous part of Au from the approximate gradient. This formula
respects the algebraic structure of A, generalizing the result for BD in [2, Rk. 7.5].

Lemma 3.1. If A is elliptic, then any map u € BVA(R") is LP-differentiable
L"-a.e. for alll1 <p<n/(n—1). Moreover, we have that
dAu

(3.1) =

() = A(Vu(z))

for L"—a.e x € R™.
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Proof. To reduce the first statement, which is essentially vectorial, to the scalar
Theorem 2.3, we simply write u; = Kﬁ * (Au);, where K* is as in Lemma 2.1 and
summation over repeated indices is adopted. We next let u € BVA(R") and z € R”
be a Lebesgue point of v and A®u, and also a point of L'-differentiability of w.
We also consider a sequence (7):)s>0 of standard mollifiers, i.e. m; € C°(B1(0)) is
radially symmetric and has integral equal to 1 and 7.(y) = e "ni(x/¢). Finally,
we write ue := u * 1. and employ the Taylor expansion (2.1) to compute

Vu(z) = /B - u(y) ® Vane(z — y) dy

. (Vu(z)(y — ) +u(z) + Ra(y)) @ Vyne(y — ) dy

= / Ne(y — x)Vu(z)dy — / R, (y) ® Vyne(y — x)dy
B:(z) B:(z)

— Vu(a) + / L Fal0) @ Vanea ) dy
B:(x

where we used integration by parts to establish the third equality. Since
IVan(@ = Yoo =&V,

we have that |Vuc(z) — Vu(z)| < e (|Rs|)ze = o(1). In particular, Vu. — Vu
L"—a.e., so that Au. — A(Vu) L"—a.e. To establish (3.1), we will show that
Au, — A%y L7-a.e. Using only that u is a distribution, one easily shows that
Aue = Au x 1., so that

Aug(z) — A%u(x) = A%uxn.(x) — A%u(x) + A%u xn-(x)

- / e — ) (A%u(y) — A%u(z)) dy
B:(z)

+ / Ne(x — y) dA%u(y).
Be(z)
Using the fact that |[7:(z — )| = € "||71]lcc and Lebesgue differentiation, the
proof is complete. O

Remark 3.2 (Insufficiency of ellipticity). Consider v as in [1, Prop. 4.2| with
d = 2. One shows by direct computation that v € BVa(Rz), where the Wirtinger

derivative
. 1 Ohu1 + Oaus
Ou = 2 ( daur — Orug

is easily seen to be elliptic (by computation). However, it is shown in |1, Rk. 4.5.(iv)]
that there are maps v € BV?(R?) which are not L% -differentiable.

In turn, the stronger FDN condition is sufficient for L' —differentiability:

Proof of Theorem 1.1. Let u € BV{%C(R”) and x € R” that is a Lebesgue point of
Awu such that

(3.2) 7][3 ) ) Ful)y — )] dy = o)

as r | 0. By Lemma 3.1 for p = 1, such points exist £L"—a.e. Here Vu(z) denotes
the approximate gradient of u at . We also define v(y) := u(y) —u(x) — Vu(z)(y—
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x) for y € R™. We aim to show that

n—1

(3.3) (é Nl dy> o)

as r J 0. Firstly, we remark that the integral in (3.3) is well-defined for r > 0, as
v is the sum of an affine and a BVf})Cfmap; the latter is L&/C("fl)fintegrable, e.g.,
by [6, Thm. 1.1]. Next, we abbreviate m,v := g (v and use Proposition 2.5 to

estimate:

1 1
*

1 %
< (][ ‘U - ﬂ'rv‘l* dy) + (][ ’er|1* dy)
BT(I) Br(x)

n—1

Av|(B, n "
gcriwwm(]z ,m,nldy) I
B (z)

1
3

1
(f ol dy>
B, (z)

T’Vl

To deal with I, first note that Av = Au—A(Vu(x)) (the latter term is obtained by
classical differentiation of an affine map). By (3.1), we obtain Av = Au— A*u(x),
so I, = o(r) as r | 0 by Lebesgue differentiation for Radon measures. To bound
IT,, we first note that on the space of polynomials of degree at most [ (containing
ker A by Lemma 2.4) the following two norms are equivalent:

n—1

(f |P\n"1dy> <c][ P|dy,
By () B, (x)

so that we have IL,. < ¢(|mv|)z,. We claim that

(3.4) ][ |mev|dy < c][ |v| dy,
BT(.Z’) B'r(x)

which suffices to conclude by (3.2), and (3.3). Though elementary and essentially
present in [3, Sec. 3.1], the proof of (3.4) is delicate and we present a careful
argument. We write

d
v = Z(v, er)es,

j=1

where the inner product and convergence are in L? and {e’ ?:1 is a (finite) or-
thonormal basis of ker A N L*(B,(z), V). As before, we have

1
2
sup \eg(y)\ <c (7[ \e;|2 dy) =crz,
y€By (z) Br(z)

so that

d
|mv|dy < ][ / lv|dz dyHerHioo B (2).V) < cr_”/ lv| dz,
7{3r<x> ; B, (@) /B, (x) P EAT) By (2

which yields (3.4) and concludes the proof. O
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